Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell Death Discov ; 10(1): 177, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627379

RESUMEN

Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.

2.
Int J Nanomedicine ; 19: 91-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192634

RESUMEN

Background: Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results: A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion: The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.


Asunto(s)
Neoplasias Óseas , Ferroptosis , Hipertermia Inducida , Osteosarcoma , Humanos , Hierro , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Oligopéptidos
3.
Talanta ; 271: 125653, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218057

RESUMEN

In analysis of complex samples, the stability and sensitivity of surface-enhanced Raman scattering (SERS) substrates may be compromised by matrix interference. To address this issue, a membrane substrate was prepared for fast enrichment, separation, and detection of chrysoidine all-in-one. The silver nanoparticles modified sulfur-containing POSS polymer (AgNPs/POSS-P-S) SERS membrane substrate was fabricated using polyhedral oligomeric silsesquioxane (POSS) as support materials. Through in-situ growth, AgNPs were uniformly modified on POSS-P-S to ensure the stability and SERS activity of the membrane substrate. The enhancement factor of the malachite green was up to 5.3 × 105. By loading the AgNPs/POSS-P-S on membrane, on the other hand, the SERS membrane substrate can also serve as an adsorption medium for separating chrysoidine from sample matrix. Furthermore, the specific sensing mechanism of AgNPs/POSS-P-S for chrysoidine was investigated and a fast, sensitive, and selective method for its quantification was established, with a linear range of 0.010-2.0 mg/L and the limits of detection at 3.7 µg/L. In addition, the SERS method was successfully applied for the analysis of chrysoidine in beverages and chili products with the recoveries in the range of 83.5%-113.4 % and the relative standard deviations in 3.2%-9.0 %. The proposed AgNPs/POSS-P-S membrane based SRES method has great potential for rapid chrysoidine analysis in food samples.


Asunto(s)
Nanopartículas del Metal , Plata , p-Aminoazobenceno/análogos & derivados , Espectrometría Raman/métodos , Adsorción , Azufre
4.
Molecules ; 28(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005309

RESUMEN

A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.

5.
Signal Transduct Target Ther ; 8(1): 260, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402714

RESUMEN

Traumatic brain injury (TBI) accelerates fracture healing, but the underlying mechanism remains largely unknown. Accumulating evidence indicates that the central nervous system (CNS) plays a pivotal role in regulating immune system and skeletal homeostasis. However, the impact of CNS injury on hematopoiesis commitment was overlooked. Here, we found that the dramatically elevated sympathetic tone accompanied with TBI-accelerated fracture healing; chemical sympathectomy blocks TBI-induced fracture healing. TBI-induced hypersensitivity of adrenergic signaling promotes the proliferation of bone marrow hematopoietic stem cells (HSCs) and swiftly skews HSCs toward anti-inflammation myeloid cells within 14 days, which favor fracture healing. Knockout of ß3- or ß2-adrenergic receptor (AR) eliminate TBI-mediated anti-inflammation macrophage expansion and TBI-accelerated fracture healing. RNA sequencing of bone marrow cells revealed that Adrb2 and Adrb3 maintain proliferation and commitment of immune cells. Importantly, flow cytometry confirmed that deletion of ß2-AR inhibits M2 polarization of macrophages at 7th day and 14th day; and TBI-induced HSCs proliferation was impaired in ß3-AR knockout mice. Moreover, ß3- and ß2-AR agonists synergistically promote infiltration of M2 macrophages in callus and accelerate bone healing process. Thus, we conclude that TBI accelerates bone formation during early stage of fracture healing process by shaping the anti-inflammation environment in the bone marrow. These results implicate that the adrenergic signals could serve as potential targets for fracture management.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Curación de Fractura , Ratones , Animales , Curación de Fractura/genética , Médula Ósea , Mielopoyesis , Ratones Noqueados , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/complicaciones , Adrenérgicos
6.
Mar Pollut Bull ; 190: 114847, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37002964

RESUMEN

Comparative study of macrofaunal assemblages in seagrass meadows and neighboring seabeds along the southeastern coast of Shandong Peninsula, China were performed. A total of 136 species were identified, including polychaetes (49 species), crustaceans (28), molluscs (58), and echinoderms (1). Species numbers of macrofauna in seagrass meadows and the neighboring seabeds were 52 and 65, respectively, whereas those in autumn were 90 and 56, respectively. Average macrofaunal abundances in spring in seagrass and neighboring seabeds were 2388.9 and 2516.7 ind./m2, respectively, whereas those in autumn were 11,689.0 and 1733.3 ind./m2, respectively. Ranges of species richness index, evenness index, and Shannon-Wiener index in seagrass meadows and the neighboring seabeds were 1.3-2.7, 0.7-0.9, 2.8-3.8, and 1.04-2.4, 0.5-0.9, 1.6-3.4 during spring, whereas those in autumn were 0.1-4.2, 0.3-0.8, 0.8-3.6 and 1.4-3.5, 0.5-0.9, 2.2-4.5. Bottom water temperature, salinity, sediment chlorophyll a concentration, and water content were the most important environmental factors influencing macrofaunal assemblages.


Asunto(s)
Equinodermos , Ecosistema , Animales , Clorofila A , Agua , China
7.
J Mater Chem B ; 11(17): 3836-3850, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36976579

RESUMEN

During chemodynamic therapy (CDT), tumor cells can adapt to hydroxyl radical (˙OH) invasion by activating DNA damage repairing mechanisms such as initiating mutt homologue 1 (MTH1) to mitigate oxidation-induced DNA lesions. Therefore, a novel sequential nano-catalytic platform MCTP-FA was developed in which ultrasmall cerium oxide nanoparticle (CeO2 NP) decorated dendritic mesoporous silica NPs (DMSN NPs) were used as the core, and after encapsulation of MTH1 inhibitor TH588, folic acid-functionalized polydopamine (PDA) was coated on the periphery. Once endocytosed into the tumor, CeO2 with multivalent elements (Ce3+/4+) could transform H2O2 into highly toxic ˙OH through a Fenton-like reaction to attack DNA as well as eliminating GSH through a redox reaction to amplify oxidative damage. Meanwhile, controllable release of TH588 hindered the MTH1-mediated damage repair process, further aggravating the oxidative damage of DNA. Thanks to the excellent photothermal performance of the PDA shell in the near-infrared (NIR) region, photothermal therapy (PTT) further improved the catalytic activity of Ce3+/4+. The therapeutic strategy of combining PTT, CDT, GSH-consumption and TH588-mediated amplification of DNA damage endows MCTP-FA with powerful tumor inhibition efficacy both in vitro and in vivo.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrógeno , Estrés Oxidativo , Neoplasias/tratamiento farmacológico , Hipertermia
8.
Front Chem ; 11: 1114434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817173

RESUMEN

Introduction: Mitochondria-targeted low-temperature photothermal therapy (LPTT) is a promising strategy that could maximize anticancer effects and overcome tumor thermal resistance. However, the successful synthesis of mitochondria-targeted nanodrug delivery system for LPTT still faces diverse challenges, such as laborious preparations processes, low drug-loading, and significant systemic toxicity from the carriers. Methods: In this study, we used the tumor-targeting folic acid (FA) and mitochondria-targeting berberine (BBR) derivatives (BD) co-modified polyethylene glycol (PEG)-decorated graphene oxide (GO) to synthesize a novel mitochondria-targeting nanocomposite (GO-PEG-FA/BD), which can effectively accumulate in mitochondria of the osteosarcoma (OS) cells and achieve enhanced mitochondria-targeted LPTT effects with minimal cell toxicity. The mitochondria-targeted LPTT effects were validated both in vitro and vivo. Results: In vitro experiments, the nanocomposites (GO-PEG-FA/BD) could eliminate membrane potential (ΔΨm), deprive the ATP of cancer cells, and increase the levels of reactive oxygen species (ROS), which ultimately induce oxidative stress damage. Furthermore, in vivo results showed that the enhanced mitochondria-targeted LPTT could exert an excellent anti-cancer effect with minimal toxicity. Discussion: Taken together, this study provides a practicable strategy to develop an ingenious nanoplatform for cancer synergetic therapy via mitochondria-targeted LPTT, which hold enormous potential for future clinical translation.

9.
Bone Res ; 11(1): 4, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596773

RESUMEN

The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data, which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS. The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential mechanism of tumor immune escape. Of note, CD24 was identified as a novel "don't eat me" signal that contributed to the immune evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted immunotherapy could be a promising approach to treat OS.

10.
Int J Nanomedicine ; 17: 5491-5510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438608

RESUMEN

Background: Although chemodynamic therapy (CDT) has attracted enormous attention in anti-tumor studies for converting endogenous hydrogen peroxide (H2O2) into toxic hydroxyl radicals (•OH) by Fenton-type reaction, the treating effects of using CDT alone is still unsatisfying. Recently, glucose oxidase (GOx) was reported to be co-delivered with Fenton agent for synergistic starvation therapy (ST) and CDT. However, the overexpressed glutathione (GSH) and hypoxia in tumor microenvironment (TME) restrict the therapeutic efficacy of ST/CDT. Methods and Results: In this work, a novel nanoplatform composed of GOx plus Fenton agent (Cu2+) encapsulated core and metformin (MET)-loaded manganese dioxide nanosheets (MNSs) shell was prepared and further functionalized by arginine-glycine-aspartate (RGD). With the RGD-mediated affinity with cancer cells, the nanocomposite (GOx-CuCaP@MNSs-MET@PEG-RGD, GCMMR) could accomplish targeting delivery and TME-activated release of cargos. The intracellular GSH was depleted by MnO2/Cu2+ and abundant H2O2 was generated along with the GOx-induced glucose deprivation, which process was further enhanced by MET-mediated hypoxia relief via inhibiting mitochondria-associated respiration. Subsequently generated •OH from Cu+-mediated Fenton-like reaction exerts severe intracellular oxidative stress and cause apoptosis. Moreover, significant inhibition of tumor growth was detected in a subcutaneous xenograft model of osteosarcoma (OS) after GCMMR treatment. Conclusion: The excellent therapeutic efficacy and biosafety of the nanoplatform were confirmed both in vitro and in vivo. Collectively, this study provides an appealing strategy with catalytic cascade enhancement on targeted ST/CDT for cancer treatment, especially for hypoxic solid tumors.


Asunto(s)
Neoplasias Óseas , Metformina , Nanocompuestos , Osteosarcoma , Humanos , Compuestos de Manganeso , Peróxido de Hidrógeno , Óxidos , Glutatión , Hipoxia , Respiración , Glucosa Oxidasa , Microambiente Tumoral
11.
Front Bioeng Biotechnol ; 10: 1024089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246356

RESUMEN

Chemodynamic therapy (CDT) is an effective anti-tumor method, while CDT alone cannot achieve a good therapeutic effect. Moreover, the overexpression of glutathione (GSH) in tumor cells dramatically limits the efficiency of CDT. Here, we proposed a hydrogel co-loading SO2 prodrug and FeGA nanoparticles (NPs) for enhancing CDT by photothermal-triggered SO2 gas therapy (FBH) system by mixing benzothiazolyl sulfonates (BTS) and FeGA NPs in a certain ratio and encapsulating them in a heat-sensitive hydrogel. FeGA NPs could accelerate the release of Fe2+ under acidic conditions and light, and combine with excess H2O2 in the tumor for chemokinetic treatment. BTS, as a water-soluble prodrug of SO2, can accurately control the release of SO2 gas by virtue of the excellent photothermal conversion ability of FeGA NPs and the acidic pH value of tumor site. SO2 can not only induce cell apoptosis, but also consume excess GSH in cancer cells and increase the content of reactive oxygen species, which seriously destroyed the redox balance in cancer cells and further promotes the therapeutic effect of Fenton reaction. The intelligent FBH system provided a new approach for the synergistic treatment of CDT and SO2 gas, which demonstrated good anticancer effects both in vivo and in vitro.

12.
Front Chem ; 10: 1035144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277336

RESUMEN

The importance of reactive oxygen species (ROS) in the occurrence and development of orthopaedic related diseases is becoming increasingly prominent. ROS regulation has become a new method to treat orthopaedic related diseases. In recent years, the application of nanomaterials has become a new hope for precision and efficient treatment. However, there is a lack of reviews on ROS-regulated nanomaterials for orthopaedic related diseases. Based on the key significance of nanomaterials for the treatment of orthopaedic related diseases, we searched the latest related studies and reviewed the nanomaterials that regulate ROS in the treatment of orthopaedic related diseases. According to the function of nanomaterials, we describe the scavenging of ROS related nanomaterials and the generation of ROS related nanomaterials. In this review, we closely integrated nanomaterials with the treatment of orthopaedic related diseases such as arthritis, osteoporosis, wound infection and osteosarcoma, etc., and highlighted the advantages and disadvantages of existing nanomaterials. We also looked forward to the design of ROS-regulated nanomaterials for the treatment of orthopaedic related diseases in the future.

13.
Drug Deliv ; 29(1): 3142-3154, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36164704

RESUMEN

The synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted considerable attention in the field of cancer therapy because of its excellent anti-tumor effect. This work provides a novel pH/NIR responsive therapeutic nanoplatform, IrO2@ZIF-8/BSA-FA (Ce6), producing a synergistic effect of PTT-PDT in the treatment of osteosarcoma. Iridium dioxide nanoparticles (IrO2 NPs) with exceptional catalase-like activity and PTT effects were synthesized by a hydrolysis method and decorated with zeolitic imidazolate framework-8 (ZIF-8) shell layer to promote the physical absorption of Chlorin e6 (Ce6), and further functionalized with bovine serum albumin-folate acid (BSA-FA) for targeting tumor cells. The IrO2@ZIF-8/BSA-FA nanocomposite indicated an outstanding photothermal heating conversion efficiency of 62.1% upon laser irradiation. In addition, the Ce6 loading endows nanoplatform with the capability to induce cell apoptosis under 660 nm near-infrared (NIR) laser irradiation through a reactive oxygen species (ROS)-mediated mechanism. It was further testified that IrO2@ZIF-8/BSA-FA can function as a catalase and convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2) to improve the local oxygen pressure under the acidic tumor microenvironment (TME), which could subsequently amplified PDT-mediated ROS cell-killing performance via relieving hypoxia microenvironment of tumor. Both in vitro and in vivo experimental results indicated that the nanomaterials were good biocompatibility, and could remarkably achieve tumor-specific and enhanced combination therapy outcomes as compared with the corresponding PTT or PDT monotherapy. Taken together, this work holds great potential to design an intelligent multifunctional therapeutic nanoplatform for cancer therapy.


Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Catalasa , Línea Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Peróxido de Hidrógeno , Estructuras Metalorgánicas/síntesis química , Neoplasias/tratamiento farmacológico , Oxígeno/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno , Albúmina Sérica Bovina , Triazenos , Microambiente Tumoral
14.
Colloids Surf B Biointerfaces ; 218: 112715, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932557

RESUMEN

Photodynamic therapy (PDT) is a promising therapeutic strategy for tumor ablation by generating highly toxic reactive oxygen species (ROS) to damage DNA and other biomacromolecules. However, the local hypoxic microenvironment of the tumor and the presence of ROS-defensing system, such as the mobilization of mutt homolog 1 (MTH1) to sanitize ROS-oxidized nucleotide pool, severely limit the efficiency of PDT. Therefore, a novel tumor ablation strategy was developed that not only focused on the enhancement of ROS generation but also weakened the ROS-defensing system by inhibiting MTH1 enzyme activity. In our work, a simple one-step reduction approach was applied to enable platinum nanoparticles (Pt NPs) with catalase activity to grow in situ in the nanochannels of mesoporous silica nanoparticles (MSNs). After physical encapsulation of photosensitizer chlorin e6 (Ce6) and MTH1 inhibitor TH588, the drug loading nanoplatform was modified with an arginine-glycine-aspartic acid (RGD) functionalized liposome shell, resulting in the fabrication of amplified oxidative damage nanoplatform MSN-Pt@Ce6/TH588 @Liposome-RGD (MPCT@Li-R). The prepared MPCT@Li-R NPs could continuously catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen (O2) in tumor, thus promoting the generation of singlet oxygen during PDT process for improved oxidative damage of bases. Simultaneously, acid responsive released TH588 hindered MTH1-mediated scavenging of oxidative bases, further aggravating DNA oxidative damage. Consequently, this cascade therapy strategy exhibited excellent tumor suppression efficiency both in vitro and in vivo.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Nanopartículas , Neoplasias , Fotoquimioterapia , Arginina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Ácido Aspártico/uso terapéutico , Catalasa/metabolismo , Línea Celular Tumoral , Glicina , Humanos , Peróxido de Hidrógeno/farmacología , Liposomas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nucleótidos , Oligopéptidos/farmacología , Estrés Oxidativo , Oxígeno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/farmacología , Oxígeno Singlete
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(7): 811-816, 2022 Jul 15.
Artículo en Chino | MEDLINE | ID: mdl-35848175

RESUMEN

Objective: To investigate the mid-term effectiveness of three-dimensional (3D) printed osteotomy guide plate and personalized prosthesis in knee-preserving tumor resection. Methods: The clinical data of 12 patients who underwent knee-preserving tumor resection and reconstruction with 3D printed osteotomy guide plate and personalized prosthesis between September 2016 and October 2018 were retrospectively analyzed. There were 7 males and 5 females. The age ranged from 7 to 59 years, with a median of 44.5 years. There were 11 cases of osteosarcoma and 1 case of fibrosarcoma, all of which were Enneking grade ⅡB. The distance from the tumor to the joint surface was 5.5-8.2 cm, with an average of 6.94 cm. Incision healing, tumor recurrence, periprosthetic fracture, and aseptic loosening were observed after operation. The Musculoskeletal Tumor Society (MSTS) scoring system was used to evaluate the function of the patients, and the knee flexion range of motion was measured. Results: The 12 patients were followed up 41-66 months, with an average of 54.5 months. The length of osteotomy ranged from 14 to 26 cm, with an average of 22.08 cm. Except for 2 patients with superficial infection of incision tissue, no deep infection involving the prosthesis occurred, no patient underwent revision surgery because of prosthesis infection. During the follow-up, local recurrence occurred in 2 cases and distant metastasis occurred in 3 cases. The overall disease-free survival rate was 58.3%. Two patients died of lung metastasis, and the overall survival rate was 83.3%. One patient underwent amputation due to local recurrence, and 1 patient underwent total knee arthroplasty due to prosthesis rupture. No aseptic loosening of the prosthesis and periprosthetic fracture occurred during the follow-up, and the overall prosthesis survival rate was 83.3%. At last follow-up, 10 patients obtained satisfactory knee flexion range of motion that ranged from 95° to 125°, with an average of 110°. Two children could not cooperate with early rehabilitation treatment due to pain, and the knee flexion range of motion was not ideal (50°, 75°). All patients achieved acceptable lower limb function with MSTS scores ranged from 26 to 30, with an average of 28. All patients walked without crutches. Conclusion: The treatment of malignant bone tumors around the knee joint with 3D printed osteotomy guide plate and personalized prosthesis can preserve the articular surface, obtain good limb function, reduce the risk of aseptic loosening of prosthesis, and achieve better mid-term effectiveness.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Miembros Artificiales , Neoplasias Óseas , Prótesis de la Rodilla , Fracturas Periprotésicas , Adolescente , Adulto , Neoplasias Óseas/cirugía , Niño , Femenino , Humanos , Articulación de la Rodilla/cirugía , Extremidad Inferior/cirugía , Masculino , Persona de Mediana Edad , Osteotomía , Fracturas Periprotésicas/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
16.
Orthop Surg ; 14(4): 720-729, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35302715

RESUMEN

OBJECTIVE: To investigate whether four-screw fixation in rhombic configuration could improve the clinical outcomes and decrease the complication rate compared with three-screw fixation in inverted triangle configuration in elderly patients with nondisplaced femoral neck fractures. METHOD: From January 2018 to January 2019, 91 elderly patients with nondisplaced femoral neck fractures who were treated with a cannulated screw system were reviewed retrospectively. The inverted triangle configuration was applied in 51 patients and rhombic configuration in 40 patients. The demographic and perioperative information of the patients were extracted from medical records and surgical records. Variables including incision size, surgical blood loss, surgical time, fluoroscopy time, hospital stays, fracture union time, postoperative visual analogue scale (VAS) scores, and complications were compared between the two groups. Also, Harris hip score at the final follow-up was used to evaluate the functional outcomes. RESULTS: All patients were followed up from 24 to 36 months, with an average of 29.75 months. The average age of patients was 72.37 ± 7.16 years. No significant differences were found between the two groups with regard to patients' age, gender, affected side, Garden classification, Pauwels classification and comminution of posterior wall (P > 0.05). We found shorter incision size (P < 0.001), less blood loss (P = 0.020), less surgical time (P = 0.026), and shorter fluoroscopy time (P < 0.001) in inverted triangle configuration group. However, shorter hospital stays (P = 0.001) and fracture union time (P = 0.002) were found in the rhombic configuration group. The VAS scores were lower in the rhombic configuration group at the first (P < 0.001) and third months (P = 0.010), but no significant difference was found at the sixth month (P = 0.075). Meanwhile, the total complication rate was relatively lower in the rhombic configuration group compared to the inverted triangle configuration group (P = 0.041). Harris hip score presented no significant difference between the two groups at final follow-up (P = 0.078). No wound infection or cortical perforation occurred in either group. CONCLUSION: Four-screw fixation in rhombic configuration was superior to three-screw fixation in inverted triangle configuration in the treatment of nondisplaced femoral neck fractures in elderly patients in terms of less early postsurgical pain, shorter fracture union time, and lower complication rate.


Asunto(s)
Fracturas del Cuello Femoral , Fracturas Conminutas , Herida Quirúrgica , Anciano , Tornillos Óseos , Fracturas del Cuello Femoral/cirugía , Fijación Interna de Fracturas , Humanos , Estudios Retrospectivos , Resultado del Tratamiento
17.
Int Orthop ; 46(7): 1637-1645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35166874

RESUMEN

INTRODUCTION: Elderly patients with femoral neck fractures (FNFs) undergoing hemiarthroplasty usually have poor physical condition. The main aim of this study was to identify risk factors for blood transfusion in these patients and construct a nomogram to intuitively predict the requirement of transfusion. The secondary purpose was to examine the relationship between blood transfusion and complications within 30 days post-operatively. Our hypothesis was that chronic kidney disease (CKD) and hypoalbuminemia may increase the requirement of transfusion. METHODS: Data of 414 elderly patients undergoing hemiarthroplasty for FNFs were retrospectively collected. Univariate and multiple regression analysis were performed to identify independent risk factors for blood transfusion, which were used to construct a nomogram subsequently. The discrimination and calibration of the nomogram model were assessed with concordance index (C-index), the area under receiver operating characteristic curve (AUC), and calibration curve. Furthermore, the complications of blood transfusion within 30 days post-operatively were also analyzed. RESULTS: Out of 414 patients, 127 (30.7%) received a blood transfusion. Independent risk factors for blood transfusion included CKD, hypoalbuminemia, pre-operative anaemia, general anaesthesia, higher American Society of Anesthesiologists score, more intraoperative blood loss, and longer surgical time. Increased hidden blood loss, deep vein thrombosis, superficial wound infection, and prolonged hospital stays were more common in transfused patients. The C-index of the nomogram model was 0.848 (95% CI = 0.811-0.885), and the AUC value was 0.859. The calibration curve showed a good consistency between the actual transfusion and the predicted probability. DISCUSSION: We observed a transfusion rate of 30.7% in elderly FNF patients undergoing hemiarthroplasty. CKD and hypoalbuminemia were firstly identified as independent risk for blood transfusion. In addition, blood transfusion can increase the occurrence of early post-operative complications. CONCLUSION: Targeted pre-operative intervention, such as optimizing CKD and correcting hypoalbuminemia is essential and highly regarded.


Asunto(s)
Fracturas del Cuello Femoral , Hemiartroplastia , Hipoalbuminemia , Insuficiencia Renal Crónica , Anciano , Transfusión Sanguínea , Fracturas del Cuello Femoral/cirugía , Hemiartroplastia/efectos adversos , Humanos , Hipoalbuminemia/etiología , Hipoalbuminemia/cirugía , Nomogramas , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Estudios Retrospectivos , Factores de Riesgo
18.
J Drug Target ; 30(3): 334-347, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34709119

RESUMEN

BACKGROUND: Existing therapeutic efficacy of chemotherapy and photodynamic therapy (PDT) is always affected by some resistance factors from tumour environment (TME), such as hypoxia and the antioxidant defense system. PURPOSE: This study aims at developing a cascaded intelligent multifunctional nanoplatforms to modulate the TME resistance for synergistically enhanced chemo- and photodynamic therapies. METHODS: In this study, we synthesised hollow manganese dioxide nanoparticles (HMDNs) loaded with the hydrophilic chemotherapeutic drug (acriflavine, ACF) and the hydrophobic photosensitizer (chlorine6, Ce6), which was further encapsulated by pH-sensitive liposome to form core-shell nanocomposite, with surface modified with arginine-glycine-aspartic acid (RGD) peptide to achieve tumour targeting. RESULTS: After uptake by tumour cells, the liposome shell was rapidly degraded by the low pH, and the inner core could be released from the liposome. Then, the released HMDNs/ACF/Ce6 would be dissociated by low pH and high levels of intracellular GSH within TME to release encapsulated drugs, thereby resulting in synergistic effects of chemotherapy and PDT. Meanwhile, the released ACF could bind with HIF-1a and then inhibit the expression levels of HIF-1's downstream signalling molecules P-gp and VEGF, which could further strengthen the antitumor effects. As a result, HMDNs/ACF/Ce6@Lipo-RGD NPs with laser irradiation exhibited superior anti-tumour therapeutic efficiency.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Liposomas , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanopartículas/química , Óxidos/química , Óxidos/farmacología , Fármacos Fotosensibilizantes/farmacología , Microambiente Tumoral
19.
Front Oncol ; 12: 1105745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761418

RESUMEN

Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.

20.
J Nanobiotechnology ; 19(1): 390, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823543

RESUMEN

BACKGROUND: Although lower temperature (< 45 °C) photothermal therapy (LPTT) have attracted enormous attention in cancer therapy, the therapeutic effect is still unsatisfying when applying LPTT alone. Therefore, combining with other therapies is urgently needed to improve the therapeutic effect of LPTT. Recently reported oxygen-irrelevant free radicals based thermodynamic therapy (TDT) exhibit promising potential for hypoxic tumor treatment. However, overexpression of glutathione (GSH) in cancer cells would potently scavenge the free radicals before their arrival to the specific site and dramatically diminish the therapeutic efficacy. METHODS AND RESULTS: In this work, a core-shell nanoplatform with an appropriate size composed of arginine-glycine-aspartate (RGD) functioned polydopamine (PDA) as a shell and a triphenylphosphonium (TPP) modified hollow mesoporous manganese dioxide (H-mMnO2) as a core was designed and fabricated for the first time. This nanostructure endows a size-controllable hollow cavity mMnO2 and thickness-tunable PDA layers, which effectively prevented the pre-matured release of encapsulated azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIBI) and revealed pH/NIR dual-responsive release performance. With the mitochondria-targeting ability of TPP, the smart nanocomposites (AIBI@H-mMnO2-TPP@PDA-RGD, AHTPR) could efficiently induce mitochondrial associated apoptosis in cancer cells at relatively low temperatures (< 45 °C) via selectively releasing oxygen-irrelevant free radicals in mitochondria and facilitating the depletion of intracellular GSH, exhibiting the advantages of mitochondria-targeted LPTT/TDT. More importantly, remarkable inhibition of tumor growth was observed in a subcutaneous xenograft model of osteosarcoma (OS) with negligible side effects. CONCLUSIONS: The synergistic therapy efficacy was confirmed by effectively inducing cancer cell death in vitro and completely eradicating the tumors in vivo. Additionally, the excellent biosafety and biocompatibility of the nanoplatforms were confirmed both in vitro and in vivo. Taken together, the current study provides a novel paradigm toward oxygen-independent free-radical-based cancer therapy, especially for the treatment of hypoxic solid tumors.


Asunto(s)
Radicales Libres , Nanopartículas del Metal/química , Mitocondrias , Sistema de Administración de Fármacos con Nanopartículas , Terapia Fototérmica , Animales , Compuestos Azo/química , Línea Celular Tumoral , Frío , Femenino , Radicales Libres/análisis , Radicales Libres/metabolismo , Humanos , Imidazoles/química , Compuestos de Manganeso/química , Ratones , Ratones Desnudos , Mitocondrias/química , Mitocondrias/metabolismo , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...